Lysosomal unesterified cholesterol content correlates with liver cell death in murine Niemann-Pick type C disease.

نویسندگان

  • Eduardo P Beltroy
  • Benny Liu
  • John M Dietschy
  • Stephen D Turley
چکیده

Niemann-Pick type C (NPC) disease is a multisystem disorder resulting from mutations in the NPC1 gene that encodes a protein involved in intracellular cholesterol trafficking. Significant liver dysfunction is frequently seen in patients with this disease. The current studies used npc1 mutant mice to investigate the association between liver dysfunction and unesterified cholesterol accumulation, a hallmark of NPC disease. Data from 92 npc1(-/-) mice (age range, 9-56 days) revealed a significant positive correlation between the plasma activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and whole liver cholesterol content. In 56 day old npc1(-/-) mice that had been fed from 35 days of age a rodent diet or the same diet containing either cholesterol (1.0%, w/w) or ezetimibe (a sterol absorption inhibitor; 0.0125%, w/w), whole liver cholesterol content averaged 33.5 +/- 1.1, 87.9 +/- 1.7, and 20.8 +/- 0.9 mg, respectively. Again, plasma ALT and AST activities were positively correlated with hepatic cholesterol content. In contrast, plasma transaminase levels remained in the normal range in npc1(+/+) mice, in which hepatic esterified cholesterol content had been increased by 72-fold by feeding a high-cholesterol, high-fat diet. These studies suggest that the late endosomal/lysosomal content of unesterified cholesterol correlates with cell damage in NPC disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic potential of cyclodextrins in the treatment of Niemann-Pick type C disease.

Niemann-Pick type C (NPC) disease is an autosomal recessive neurovisceral lipid and storage disorder characterized by abnormal sequestration of unesterified cholesterol within the late endosomal/lysosomal compartment of all cells in the body. This disease primarily affects children and is characterized by hepatic and pulmonary dysfunction, neurodegeneration and death at an early age. Currently,...

متن کامل

Loss of Niemann-Pick C1 or C2 Protein Results in Similar Biochemical Changes Suggesting That These Proteins Function in a Common Lysosomal Pathway

Niemann-Pick Type C (NPC) disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosoma...

متن کامل

Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease.

Niemann-Pick type C1 (NPC) disease is a lysosomal storage disease caused by mutations in the NPC1 gene, leading to an increase in unesterified cholesterol and several sphingolipids, and resulting in hepatic disease and progressive neurological disease. We show that subcutaneous administration of the pharmaceutical excipient 2-hydroxypropyl-β-cyclodextrin (HPβCD) to cats with NPC disease amelior...

متن کامل

Sensitivity to Lysosome-Dependent Cell Death Is Directly Regulated by Lysosomal Cholesterol Content

Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1) protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We fo...

متن کامل

Mannose 6-phosphate receptors, Niemann-Pick C2 protein, and lysosomal cholesterol accumulation.

Niemann-Pick disease type C (NPC), caused by mutations in the NPC1 gene or the NPC2 gene, is characterized by the accumulation of unesterified cholesterol and other lipids in endo/lysosomal compartments. NPC2 is a small, soluble, lysosomal protein that is targeted to this compartment via a mannose 6-phosphate-inhibitable pathway. To obtain insight into the roles of mannose 6-phosphate receptors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2007